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a b s t r a c t

A recently introduced similarity measure is extended here for comparing two-dimensional spectra. Its
applicability is demonstrated with heteronuclear single-quantum correlation (HSQC) NMR spectra. For
testing the compatibility of a spectrum with the proposed chemical structure, first, the spectrum is pre-
ccepted 2 June 2009
vailable online 12 June 2009

eywords:
pectra comparison
SQC spectra

dicted on the basis of that structure and then, the proposed comparison algorithm is applied. In this
context, the topics of optimization are peak picking, signal intensity measures, and optimizing the param-
eters of the two-dimensional comparison method. The performance is analyzed with a test set of 289
structures of organic compounds and their HSQC and 1H NMR spectra. The results obtained with HSQC
spectra are better than those achieved using the previously described one-dimensional similarity test
with 1H NMR spectra alone.
utomatic NMR spectra interpretation

uality control

. Introduction

The bottleneck of obtaining useful NMR spectroscopic informa-
ion has successively shifted from registering to interpreting spectra
f organic compounds. Consequently, there is an increasing need
or computer programs performing automatic interpretation [1].
n many applications, NMR spectra are taken in order to confirm
n expected structure of a compound. Thus, the confirmation or
ejection of the expected structure is sufficient and no full inter-
retation of the spectra is required. Various approaches have been
roposed on these lines. In a series of papers, Griffiths, first, auto-
atically extracted the relevant parameters (i.e., chemical shifts

2], coupling constants [2], and integrals [3]) from 1H NMR spectra.
hen, the parameters were automatically compared with those pre-
icted from the proposed structure [4]. The comparison was based
n a full assignment of predicted and measured values and the cal-
ulation of the so-called mismatch matrix between the two sets.
he test set consisted of 21 pairs of measured and predicted 1H
MR spectra, for the latter using partly the correct and partly a
imilar structure. For this set, the mismatch methodology allowed
nrelated compounds to be differentiated with very high levels of
eliability (>99%) [4]. Later, the automatic evaluation of parameters
as extended to flow-NMR spectra [5]. Corresponding compati-
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© 2009 Elsevier B.V. All rights reserved.

bility tests with 27 samples (each one compared with all others)
yielded an error of 10–15% (sum of false negatives and false posi-
tives) [6]. Another study was also based on the automatic evaluation
of the above-mentioned three kinds of parameters, i.e., chemical
shifts, multiplicities, and intensities, but used their weighted sum
as similarity criterion [7]. Several test sets (with individually opti-
mized parameters in each case) led to the conclusion “that a system
is possible whereby 69% of the spectra are prepared and evaluated
automatically, and never need to be seen or evaluated by a human”
[7]. The reliability of the automatic comparison was increased by
additionally using 13C NMR chemical shifts [8,9]. The improvement
was not only due to the additional parameters but also due to the
increase in the reliability of the 1H shift assignments obtained by
2D HSQC spectral information [10].

Especially with second-order spectra and overlapping signals,
the automatic assignment of chemical shifts and multiplicities,
obviously, is an error-prone task. Therefore, spectra comparison
without previous assignment might be an advantage. By using the
binning method, i.e., by evaluating the integrated intensities in
fixed-length intervals [11], NMR spectra can easily be converted
into vectors. Conventional comparison methods of vectors, such as
distance of angle measures (correlation coefficient), do not ade-

quately reflect spectral similarity because there is no information
about the neighborhood of the individual bins, i.e., between small
and large deviations of estimated and measured chemical shifts.
Spectral similarity is, however, well reflected by several recently
introduced measures [12–14]. The similarity of related 1H NMR
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pectra was successfully detected by dividing them in varying num-
ers of bins and, for each division, calculating the signal intensities
ithin each bin (for details, see below) [14]. For a test set of 1146

H NMR spectra, each measured spectrum was compared with two
redicted ones, one on the basis of the correct structure (normal
ssignment) and the other based on a randomly selected structure
rom the library (random assignment). The overlap between the
istribution of correct and incorrect structures was 12%.

In this work, we present a generalization of the previously intro-
uced method for 2D NMR spectra and implement it for comparing
SQC spectra. For the practical application, the peak-picking proce-
ure had to be optimized. Peak intensities in HSQC spectra depend
n the value of the C–H coupling constants. Since the similarity
easure is based on peak intensities, which in HSQC spectra are

iased, various intensity measures have been tested.

. Theory

For the one-dimensional bin method introduced earlier, the
pectra are divided in ranges (bins) of variable length, and the inte-
rated intensities of the individual ranges are calculated [14]. In
he present work, two-dimensional spectra are successively divided
nto n2 rectangle bins (n divisions along rows and columns) with
= 1, N, N corresponding to the maximal number of divisions in
oth directions (1H NMR and 13C NMR), which is obtained through
ividing the spectral ranges by the minimal bin widths. For a total
pectral range of 190 ppm, minimal bin widths of 10, 5, and 2.5 ppm
ere tested for 13C NMR spectra. In the case of 1H NMR, the total

ange was 12 ppm and the corresponding minimal bin widths were
.64, 0.32, and 0.16 ppm. First, the total integral of the spectrum

s normalized to the total number of protons. Then, for each divi-
ion, the similarity index, SIn, between the two spectra x and y is
alculated [14] as:

In = Ixy(n)
Ix + Iy − Ixy(n)

(1)

x and Iy being the total integrals of the spectra x and y, respectively,
nd

xy(n) =
n∑

i=1

min(Ix(i), Iy(i)) (2)

ith Ix(i) and Iy(i) as the integrated intensities for the respective
pectra within bin i.

The overall similarity, S, is defined as the normalized integral
f the function, SI∗n, which is obtained by connecting the global
axima of the SIn values (cf. [14]):

= 1
N

N∑
n=1

SI∗n (3)

here:

I∗n = max
(

SIn,
SIa(n − b) − SIb(n − a)

a − b

)
(4)

ith
Ia = SI∗n−1 and SI∗1 = 1 (5)

Ib =
{

max SIi
∣∣i = n, N

}
(6)

As shown in Fig. 4 of ref. [14], these equations interpolate
etween the local maxima; a and b correspond to the running index
umber of the previous and the next maximum, respectively. The
ethod is demonstrated further below using a practical example.
(2009) 1379–1386

3. Experimental

The algorithms (input/output modules, similarity criteria) were
implemented in Borland® DelphiTM 5.0 [15]. The tests were per-
formed on a Windows® PC with Intel® Pentium®4 2.8 GHz CPU and
512 MB RAM. To estimate the HSQC NMR spectra, the program NMR-
Prediction 3.0 program [16–18] was used for predicting the 1H and
13C chemical shifts.

The test set consisted of 289 organic compounds having an aver-
age molecular mass of 300 Da (range, 80–1200 Da) and their HSQC
and 1H NMR spectra. The HSQC spectra were recorded in the range
of −5 to 185 ppm with 512 digital points in the 13C NMR direction,
and in the range of −0.5 to 11.5 ppm with 2048 digital points in
the 1H NMR direction. Note that the library consisted of routine
spectra without manual adjustments, i.e., impurities and spectral
imperfections contributed to the errors. The signals of the not fully
deuterated dimethyl sulfoxide (DMSO-d5) and CHCl3 were auto-
matically removed prior to comparison. The 1H NMR spectra were
recorded in the range of −1 to 21 ppm with 32 K digital points.
During the tests, the original full sizes of the spectra were used.

Each measured HSQC spectrum was compared with two pre-
dicted ones: one on the basis of the correct structure (normal
assignment) and the other based on a randomly selected struc-
ture from the library (random assignment). Note that the same
random assignment was used for each experiment. Ideally, all nor-
mal comparisons should lead to a high and the random ones to
a low similarity value. The similarities calculated for each spectra
pair, both for normal and random assignments, were analyzed with
histograms having 100 clusters/bin. The overlap between two his-
tograms (in the case of normal and random assignment) is used
as a measure of performance, i.e., the lower the overlap, the better
and more selective is the similarity method and/or the HSQC signal
selection algorithm. In the following, several tests were conducted
with different parameter settings of the bin method and using the
two HSQC signal selection algorithms with various parameter val-
ues.

Computing times for comparing one pair of spectra, including
the spectra prediction and elimination of noise and solvent signals,
were of the order of 2–4 s.

4. Results and discussion

The goal of this work was the development of a computer
program capable of predicting, in a fully automatic mode, the com-
patibility of an HSQC NMR spectrum with a proposed chemical
structure. To implement the 2D spectral comparison method, first,
a peak-picking algorithm had to be developed. Signal intensities
in HSQC spectra strongly vary because they depend on the cou-
pling constants, 1JCH, and instrumental parameter settings [19,20].
Therefore, in this work, different heuristic intensity measures were
tested. Then, the parameters of the spectral comparison as pre-
sented in Section 2 were optimized.

4.1. Peak picking

One of the major advantages of HSQC spectra is their short
recording time, which is shorter than for one-dimensional 13C NMR
spectra [19]. Therefore, they are increasingly used as an alternative
of 1D 13C NMR spectra. In view of automatic spectra interpretation,
their further advantages are that the 1H/13C chemical shift infor-

mation is available simultaneously and that X–H signals, for which
a reliable shift prediction is difficult, are absent from HSQC spectra.
Nevertheless, they have also some disadvantages. Obviously, there
is no coupling information, and no signals for quaternary carbon
atoms are present. One major problem with HSQC spectra is that it
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Scheme 1. Algor

ight be difficult to find all relevant signals because, as mentioned
bove, their intensities strongly depend on the respective one-bond
oupling constants, 1JCH, for which one single value is assumed in
n experiment. An exact value of the pulse lengths is essential but
ven with optimal parameter settings, various signals may occur as
rtifacts [19,20].

Initially, the standard Bruker TopSpin 1.3 processing software
21] was tested for peak picking. In several cases, methods to
ncrease the signal-to-noise ratio had to be used such as the so-
alled window function and linear prediction. It was possible to
nd all signals but the parameters had to be customized by trial and
rror and their optimal values were different for individual spec-
ra. Hence, the method is not adequate for automatic processing
o that another peak-picking algorithm had to be developed (see
cheme 1).

First, the intensities of the spectrum were normalized to the
ange of 0–1 by dividing them by the maximal intensity value. In
he next step, the intensity of the noise was estimated by calculating
he average intensity values in those ranges of the HSQC spectrum

here no signal is expected, i.e., in the upper left and bottom right

orners in a range of 0.05 ppm (11 digital points) in the 1H NMR
irection and of 4 ppm (9 digital points) in the 13C NMR direction.
his calculated average intensity of the noise was the starting value

Fig. 1. A sample HSQC NMR spectrum of a target structure from the test set befo
or peak picking.

of the threshold that defines the signals in the spectrum. The level
of the threshold was then increased in small steps (0.001) until all
so-called isolated signals disappeared, i.e., till there were no more
points above the threshold value being surrounded by points with
intensities below the threshold level. In other words, it is assumed
that a true signal consists of at least two neighboring points whose
intensities are above the threshold value. These points represent
the initial guess of possible signals, which usually also contain a
series of artifacts.

One kind of artifacts often encountered in HSQC spectra is max-
ima appearing around strong signals along a vertical line at the
same 1H NMR chemical shift (t1 noise) [20]. To eliminate such
artifacts, only the most intense signal is kept along this coordi-
nate, using a tolerance of ±0.016 ppm (3 digital points) for the 1H
NMR shift. The minimal 13C NMR chemical shift difference between
two signals with the same 1H NMR shift (within this tolerance)
has to be >3.7 ppm (10 digital points). Note that this is a heuristic
approach, which may lead to a loss of signals. Another observed
artifact was that, due to spectral noise, large signals were divided

in two or more “islands” of signals. This was avoided by keep-
ing only the most intense signal within a range of 0.06 ppm (10
digital points) for 1H NMR and 1.2 ppm (3 digital points) for 13C
NMR. Even after these steps, in a number of cases, too many peaks

re (left) and after (right) automatic removal of artifact and solvent signals.
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Scheme 2. Assigning inten

ere retained. After analyzing the signals in terms of their maxi-
um intensity, the number of digital points of each of them, and

he sum of intensities within each signal, the algorithm was fine-
uned by keeping only those signals whose summed intensity was
1/18 of the average sum of intensities of all remaining signals.
inally, the signals originating from the not fully deuterated sol-
ents, dimethyl sulfoxide-d5 (DMSO-d5) and CHCl3 were removed.
tolerance range of ±0.02 ppm (1H NMR) and ±1.5 ppm (13C NMR)
as applied to the expected signal positions of 2.50/39.50 ppm

DMSO-d5) and 7.26/77.0 ppm (CHCl3). As an example, a HSQC NMR
pectrum from the test set is shown in Fig. 1 before (left) and after
right) automatic removal of artifact signals.

.2. Assignment of intensities

As presented in Section 2, the basis of comparing 2D NMR spec-
ra is to divide them in varying numbers of squares, in which the
ignal intensities are added up. Therefore, an intensity must be
ssigned to each signal. Since measured intensities are biased by
arious possible artifacts, heuristic intensity measures were used
n this work in that two different ways of representing the intensi-
ies of identified signals were applied: (1) the uniform intensity of
for all signals and (2) the integrated intensity of the correspond-

ng 1H NMR signal. The algorithm for the second method is shown
n Scheme 2. Here, we also used the 1H NMR spectrum belonging
o the same compound as the HSQC spectrum in question. Thus,
he 1H NMR spectrum was read from file and preprocessed: First,

he integrated intensities were normalized to the 0–1 range; then,
he solvent and noise signals were eliminated and, finally, the inte-
rated intensities were normalized to the number of protons. Next,
he signals in the HSQC spectrum were assigned (Scheme 1) and
he signals of the solvent impurities were removed. Then, the 1H
to the HSQC NMR signals.

NMR chemical shifts of the HSQC signals (i.e., the signals projected
on the x axis) were ordered by descending ppm positions. For each
of these shifts, the corresponding signal was searched in the 1H
NMR spectrum: In a given range, first, the signal peak was identi-
fied and, then, the edges of the signal were defined. The intensities
between these edges were added up (equal to the integral of the
1H NMR signal) and stored. In the next step, each calculated inte-
gral was divided by (sum + X–HNo)/ProtonNo, where sum is the sum
of the integrals of all identified signals, X–HNo is the number of
X–H, i.e., hydrogen atoms not bonded to carbon, and ProtonNo is
the total number of protons in the structure. Finally, the normal-
ized integral was assigned to the intensity of the corresponding
HSQC signal. In the case of estimated HSQC spectra, the appro-
priate number of protons was attributed to each predicted HSQC
signal.

4.3. Comparing spectra

The 2D spectral comparison approach described in Section 2 is
demonstrated in Fig. 2. The similarities, SIn (Eq. (1)), between the
measured and predicted HSQC spectra from Fig. 1 are calculated
using different numbers, n2, of bins. The signals in both spectra
are represented here with the intensity value of 1. Both spectra
are successively divided into n2 bins (n = 2, 10), yielding similar-
ity values of SIn = 1.0000, 1.0000, 1.0000, 0.8182, 0.9286, 1.0000,
0.9375, 0.8704, and 0.7924, respectively. A division of 10 bins in both
directions (i.e., a partition of totally 100 bins) results in a minimal

bin width of 13 ppm in the direction of 13C NMR (range: 130 ppm)
and 0.8 ppm in that of 1H NMR (range: 8 ppm). Usually, for test-
ing purposes, a larger number of bins is used: Optimal results have
been achieved with 382 or 762 bins (see below), corresponding to
minimal bin widths of 3.42/0.21 or 1.71/0.11 ppm, respectively.
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ig. 2. Illustration of the similarity calculation based on uniform intensities betwe
uccessively divided into n2 bins (n = 2, 10), yielding a similarity index, SIn (Eq. (1)),
cf. Eq. (1)).

It is observed that, as in the one-dimensional case [14], the simi-
arity values do not decrease monotonously, i.e., a finer division with

ore bins may provide a higher value of similarity than a coarser
ne. For example, the similarity with 7 divisions in both directions
i.e., a total of 49 bins, second row, right in Fig. 2) is equal to 1.0000,
hile with 5 divisions, it is only 0.8182. This behavior is a basic

imitation of the bin method in that signals of two spectra (e.g.,

easured and calculated ones) may fall into different ranges (bins)

ven if the difference in their position is small. A finer division may
hift the borders so that they again fall into the same bin. To reduce
his adverse effect, tests were made with overlapping bins. With
his approach, some regions (a given percentage) of the spectra are
asured and predicted HSQC NMR spectra (scales in ppm). The overlaid spectra are
00, 1.0000, 1.0000, 0.8182, 0.9286, 1.0000, 0.9375, 0.8704, and 0.7924, respectively

shared by several bins. Thus, tests were conducted using 382 and
762 bins and various degrees of overlaps, i.e., 10%, 30%, 50%, 70%,
and 90% (results not shown). In most of the cases, the results were
better with nonoverlapping bins. Since the use of overlapping bins,
which is rather time-consuming, did not significantly improve the
selectivity of the bin method, it was abandoned.

Since 1H and 13C chemical shifts of CHn groups have a certain

degree of correlation, HSQC signals tend to be close to the diago-
nal of the individual bins. A better similarity measure is expected
if the spectra are rotated so that the bins are perpendicular to the
signals’ main trend. Moreover, the probability that measured and
predicted signals close to each other are not separated in differ-
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Fig. 3. Measured (dots) and predicted (triangles) H

nt bins is higher. Therefore, further tests were made with rotated
pectra. Since rotation is done using the ppm coordinates, first, the
pectrum is stretched along the x axis, i.e., along the 1H NMR coor-
inates, in order to obtain a square. Then, it is rotated clockwise by
5◦. The measured and estimated HSQC spectra of the compound in

ig. 1 is shown in Fig. 3 before (left) and after (right) rotation. With
maximal number of N = 26 (i.e., 262 bins), the calculated overall

imilarity, S (Eq. (3)), between measured and predicted HSQC spec-
ra is 0.4425 without and 0.6727 with rotation. The results for the
hole test set are given below.

ig. 4. Histograms of similarity values, S (Eq. (3)), of measured and calculated HSQC NMR s
he overlaps between the similarity values of correctly and randomly assigned spectra are
n both cases, the maximal number of bins was 382 and the spectra were rotated clockwi
MR spectra before (left) and after (right) rotation.

The influence of the various parameters, i.e., the intensity
measure, the maximal number of bins, and the rotation of the
spectra, is investigated in the following. Each HSQC spectrum of
the test set was compared with the spectrum estimated on the
basis of the correct structure (normal assignment) and with a

structure randomly selected from the test set (random assign-
ment). In all cases, the same randomly selected target compound
was used (cf. Fig. 3). The similarity values, S, are depicted as
histograms for both cases (Fig. 4) and the overlap between the
two distributions, i.e., between normal and random assignment,

pectra of the test set using normal (black) and random (gray) structure assignments.
: 5.9% (uniform intensities, top) and 4.8% (intensities from 1H NMR spectra, bottom).
se by 45◦ .
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Table 1
Similarity, S (Eq. (3)), obtained with N = 26 (first value) and N = 38 (second value) for the HSQC spectrum of the
target molecule (first left structure, spectrum in Fig. 1, left) when compared with 11 related structures.

i
F

r
i

s used as a quality measure. The test results are shown in
ig. 5.

The overlap between the similarity distributions for normal and
andom assignments is higher throughout when using the uniform
ntensity of all identified HSQC signals (Fig. 5, top) than with intensi-
ties of the corresponding 1H NMR signals (Fig. 5, bottom). A detailed
analysis of the results shows that this is mainly due to remaining
errors in the signal assignment. Theoretically, 2281 signals should
be found in the 289 spectra. The algorithm used made altogether
344 erroneous assignments (196 signals missing and 148 signals
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Fig. 5. Influence of the number of bins (192, 382, or 722), the rotation of the spectra,
and the intensity measure on the performance of the 2D NMR spectral comparison.
For the different parameters, the overlap is shown between the histograms of overall
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imilarity values, S (Eq. (3)), of measured and calculated HSQC NMR spectra using
orrect and random structure assignments. The signal intensities of the HSQC spectra
ere either uniform (top) or calculated from the integrals of the corresponding 1H
MR spectra (bottom).

n excess). On the other hand, using the intensities of the 1H NMR
pectra, the sum of measured signal intensities is 4719 as compared
ith the predicted value of 4730. This small remaining difference

ndicates that errors in peak picking are partly compensated by the
ssignment of intensities from the 1H NMR spectra. With this inten-
ity measure, the overlap between the similarities of correct and
andom structure assignments is 4.5% with 192 bins without rota-
ion and 4.8% with 382 bins and rotated spectra. Since the latter
orresponds to bin widths of 3.42 and 0.21 ppm (13C and 1H NMR,
espectively), which is close to the precision errors of the program
sed [18], this seems to be the best selection. Table 1 further illus-
rates the capabilities of the system. Of the eleven related structures
hown, seven have similarity values, S, rather close to those of the
orrect (target) structure (top left). Obviously, the present system
s mainly appropriate to detect gross errors, but further improve-

ents are required for distinguishing closely related structures.
ote, however, that with the recently improved quality of predic-

ion (1.40 and 0.18 ppm for 13C and 1H NMR, respectively [22]),
maller bin widths will lead to a better discrimination of similar
tructures.

The resulting histograms of similarity values, S, obtained with
82 bins and rotated spectra for the correct and random assign-
ents are presented in Fig. 4. For comparison, the corresponding

istograms were calculated on the basis of the 1H NMR spectra
lone using the previously described algorithm [14]. With the opti-

um of the minimal bin width of 0.4 ppm, the overlap between the

orrectly and randomly assigned spectra is 11.4%. Thus, as expected,
he use of HSQC spectra with the 2D bin method is superior. Since
he estimation of the chemical shifts of exchangeable protons is
roblematic, improved results can be expected if such protons are

[

[

[

(2009) 1379–1386

excluded. This can be done by eliminating those protons, whose
signals do not appear in the HSQC spectra [9]. Indeed, with this
method, the results are significantly better in that the overlap
between the correctly and randomly assigned spectra is reduced
to 5.9% (minimal bin width, 0.4 ppm), i.e., it is nearly as low as with
HSQC spectra.

Due to the different test sets and the rather low number of struc-
tures used in all studies so far, a quantitative comparison of the
results of our study with those obtained earlier by Griffiths et al. [8]
and Golotvin et al. [9] does not make sense. For a qualitative rela-
tionship, the number of false positives and false negatives can be
read out from Fig. 4. With a similarity threshold of S = 0.39, 7.3% false
positives and no false negatives occurred. With S = 0.55, there were
17.6% false negatives and no false positives. These results are com-
parable with those obtained earlier [8,9]. Since the approaches are
different, their combination is expected to provide the best results.

5. Conclusions

The extension of the similarity measure, based on the com-
parison of signal intensities in variable numbers of bins, to two
dimensions is straightforward. For applying the method to HSQC
NMR spectra, automatic peak picking and assignment of signal
intensities are crucial steps. The fully automatic heuristic methods
developed here are not free of incorrect assignments. Correspond-
ing errors as well as deviations between predicted and observed
1H and 13C NMR chemical shifts contribute to the errors of auto-
matic compatibility tests. In spite of these errors, the results with
routine spectra without any manual editing are encouraging. Since
methods developed earlier are based on different approaches, their
combination with that introduced here should further improve the
reliability of automatic compatibility tests.
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